"Nanocomposites and nanomaterials"

Magnetic and electrical properties of Fe-B-P-Nb-Cr nanocrystalline alloys

Y.I. Yarmoshchuk¹, T.M. Mika², V.K. Nosenko², M.P. Semen'ko¹

1 Taras Shevchenko National University of Kyiv, Faculty of Physics, 2 Glushkova ave., Kiev 03022, Ukraine.

 $E\text{-}mail: yevhenii_yarmoshchuk@outlook.com$

² G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky blvd., Kiev 03142, Ukraine.

The magnetic properties of amorphous Fe-B-P-Nb-Cr alloys, obtained by melt spinning technique, after their nanocrystallization were investigated. By optimizing the chemical composition and heat treatment conditions selection, high values of saturation induction B_S =1,37 T, initial permeability μ_{10} =7800 units, low values of dynamic coercivity H_C =3 A/m with low core loss $P_{10/1000}$ ~5 W/kg were reached.

From the study of the temperature dependences of the electrical resistance in the range of 77-846 K follows that the temperature coefficient α_{300} for all investigated alloys is less than $10^{\text{-4}}$ K $^{\text{-1}}$ and the values of the resistivity ρ_{300} are in range 170-190 $\mu\Omega\text{-cm}$. The values of α_{300} are lower and the values of ρ_{300} are quite higher in comparison with typical values for most amorphous Fe-based alloys (greater than $10^{\text{-4}}$ K $^{\text{-1}}$ and 100-150 $\mu\Omega\text{-cm}$ respectively). The high values of ρ_{300} and the low values of α_{300} along with good magnetic parameters are additional factors that contribute to high operational properties of such materials as magnetic elements for various purposes.

According to the analysis of small-angle X-ray scattering spectra, size distribution of inhomogeneities that are nanocrystalline groups was defined [1]. The lower size limit of such inhomogeneities estimated by the half-width of structural factor [2] correlates with the results of small-angle scattering.

- 1. *Bressler I.*, *Pauwb B. R.*, *Thunemann A. F.* McSAS: software for the retrieval of model parameter distributions from scattering patterns. // J. Appl. Cryst.-2015.-48.-P. 962–969.
- 2. Лепеева Ю.В., Слуховский О.И., Зелинская Г.М., Маруняк А.В. Проблемы определения размеров кластеров в аморфных металлических материалах. // Металлофиз. и новейшие технол.-2014.-36, №7.-Р. 987-997